研究论文

先进成像

激光写光电子学进展

基于 DeepLabv3+的轻量化路面裂缝检测模型

夏晓华*,苏建功,王耀耀,刘洋,李明臻 长安大学工程机械学院,陕西西安 710000

摘要 裂缝是路面最主要的病害之一,及时、有效地检测和评估裂缝对路面养护至关重要。为实现路面裂缝图像快速、准确的语义分割,提出一种基于 DeepLabv3+模型的路面裂缝检测方法。为减小模型参数量、提高推理速度,采用 MobileNetv3作为模型的主干特征提取网络,且在空洞空间金字塔池化模块中使用Ghost卷积代替普通卷积,使模型更加 轻量化。为避免替换主干网络降低模型精度:首先,在空洞空间金字塔池化模块中使用条形池化模块代替全局平均池 化,有效捕获裂缝结构的上下文信息,避免无关区域噪声的干扰;其次,引入轻量级通道注意力机制 efficient channel attention(ECA)模块,增强特征的表达能力,并设计浅层特征融合结构丰富图像的细节信息,优化模型对裂缝的识别效 果;最后,构造混合损失函数解决裂缝数据集类别不平衡而导致检测精度较低的问题,利用迁移学习的训练方式提高模 型的泛化能力。实验结果表明:所提路面裂缝检测模型参数仅为14.53 MB,比原模型参数量减少93.04%,平均帧率达 到47.18,满足实时检测的要求;在精度方面,该模型裂缝检测结果的交并比和F1值分别为57.21%和72.76%,优于经 典的 DeepLabv3+、PSPNet、U-Net模型和先进的 FPBHN、ACNet等模型。所提方法可大幅减小模型参数量,在保证路 面裂缝检测精度的同时满足实时性,为基于语义分割的路面裂缝在线检测奠定基础。 关键词 图像处理;路面裂缝检测;语义分割; DeepLabv3+;轻量化;检测精度

中图分类号 U418.6; TP391.4 **文献标志码** A

DOI: 10.3788/LOP231323

Lightweight Pavement Crack Detection Model Based on DeepLabv3+

Xia Xiaohua^{*}, Su Jiangong, Wang Yaoyao, Liu Yang, Li Mingzhen

College of Engineering Machinery, Chang'an University, Xi'an 710000, Shaanxi, China

Abstract Cracks are one of the main road surface diseases, and timely and effective crack detection and evaluation are crucial for road maintenance. To achieve fast and accurate semantic segmentation of road crack images, a road crack detection method based on the DeepLabv3+ model is proposed. To reduce the number of model parameters and improve inference speed, MobileNetv3 is used as the model's backbone feature extraction network, and Ghost convolution is used instead of ordinary convolution in the atrous spatial pyramid pooling module to make the model lightweight. To avoid degrading model accuracy by replacing the backbone network, the following measures are adopted. First, a strip pooling module is used in the atrous spatial pyramid pooling module to effectively capture the contextual information of crack structures while avoiding interference from irrelevant regional noise. Second, a lightweight channel attention mechanism, the effective channel attention (ECA) module, is introduced to enhance the feature expression ability, and a shallow feature fusion structure is designed to enrich the image's detailed information, optimizing the model's crack recognition effect. Finally, a mixed loss function is proposed to address the issue of low detection accuracy caused by imbalanced categories in the crack dataset, and transfer learning training is used to improve the model's generalization ability. The experimental results show that the proposed road crack detection model's parameters are only 14.53 MB, which is 93.04% less than the original model parameters, and the average frame rate reaches 47.18, meeting the requirements of real-time detection. In terms of accuracy, the intersection to union ratio and F1 value of this model's crack detection results are 57.21% and 72.76%, respectively, which are superior to classic DeepLabv3+, PSPNet, and U-Net models, as well as advanced FPBHN, ACNet, and other models. The proposed method can significantly reduce the number of model parameters while maintaining road crack detection accuracy and meeting real-time requirements, thus laying the foundation for online detection of road cracks based on semantic segmentation.

Key words image processing; road crack detection; semantic segmentation; DeepLabv3+; lightweight; accuracy of detection

通信作者: *xhxia@chd.edu.cn

收稿日期: 2023-05-15; 修回日期: 2023-07-04; 录用日期: 2023-07-24; 网络首发日期: 2023-08-15

基金项目:国家自然科学基金项目(52205249)、陕西省重点研发计划项目(2019GY-116)

第 61 卷第 8 期/2024 年 4 月/激光与光电子学进展

1引言

裂缝作为常见的路面病害种类之一,对道路的性能、寿命及行车安全构成严重的潜在威胁。因此,及时、高效地检测路面裂缝并进行修复,对于保证交通运输质量、节约道路养护成本具有重要意义。早期的路面裂缝检测通过人工完成,费时费力、效率低,检测准确率依赖于专业检测人员的经验与知识。基于计算机视觉的路面裂缝自动检测方法可大幅度降低人力、时间成本,提高自动化水平。如何高效、准确、智能地检测路面裂缝已成为我国公路养护管理的热点问题^[1]。

早期的路面裂缝自动检测方法主要基于数字图 像处理技术,如边缘检测法^[2]、阈值分割法^[3]、小波变 换法^[4]及区域生长法^[5]等。这类方法利用机器完成裂 缝检测,提高检测效率的同时避免产生人为误差,促 进了路面裂缝检测技术的进步。但这些方法对阴影、 光照及路面污渍等环境因素较敏感,鲁棒性不足,在 实际应用中具有较大的局限性。

随着计算机视觉与深度学习的发展,卷积神经网 络(CNN)在目标检测^[67]及图像分割^[89]领域中体现 出巨大的优越性。CNN应用于裂缝检测时,主要分 为两类,一类是以YOLO、SSD和Faster RCNN等为 代表的目标检测方法,这类方法通过矩形检测框标记 裂缝位置,并注明裂缝类别。罗晖等^[10]通过引入 Focal 损失函数,使用深度可分离卷积替代模型主干 特征提取网络中的普通卷积,构建改进型 YOLOv4 轻量级神经网络模型,并借助迁移学习思想训练模 型,在提高检测速度的同时检测准确率也有所提升。 Haciefendioğlu 等^[11]利用两阶段(two stage)检测网络 模型 Faster RCNN 识别混凝土路面裂缝,并研究不同 拍摄方式、光照和天气条件对模型检测效果的影响。 孙朝云等^[12]为提高SSD网络模型对路面裂缝分类和 定位的准确率,在模型的特征提取结构中使用深度残 差网络,且通过损失函数的收敛程度来优化模型中的 超参数。基于目标检测的方法对形状简单、紧凑的裂 缝有良好的效果,然而,对于复杂和狭小的裂缝,此类 方法推理得到的矩形检测框面积过大,对裂缝的具体 形状的检测不准确。此外,基于目标检测的方法只能 确定裂缝的位置和相对大小,不能明确裂缝的形状、 长度及宽度等详细信息,给道路精细化养护带来了困 难。另一类方法是以 fully convolutional network (FCN)、U-Net和 DeepLabv3+等为代表的语义分割 方法,这类方法对每个像素赋予合适的标签,实现图 像端到端的像素级分类。彭磊等^[13]对U-Net模型的 网络层数进行超参数优化,其在CRACK500测试集 上的精确率为62%,召回率为59%,F1值为61%。 王保宪等^[14]将U-Net++网络作为裂缝检测的主框 架,通过融合更多的底层特征信息来提升检测精度。 袁嘉豪等^[15] 对采用不同主干特征提取网络的 DeepLabv3+模型进行对比实验,实验结果表明,该 模型在裂缝检测中效果优异。李国燕等^[16]通过空间注 意力机制、视觉 atrous spatial pyramid pooling(ASPP) 模块和多特征融合机制构造 MFC-DeepLabv3+模 型,该模型检测的裂缝分割图像区域更完整,边缘更 清晰。然而,为提高路面裂缝检测的准确率,语义分 割模型的网络深度不断增加、复杂程度不断提高,致 使模型存在参数量巨大、计算复杂、推理速度慢及不 适宜部署到嵌入式系统的缺点,影响检测效率,不能 应用在实时场合中。因此,在保证路面裂缝检测精 度的前提下,如何减少语义分割模型参数量使其更 加轻量化并提高其推理速度是当前研究亟须解决的 问题。

鉴于 DeepLabv3+模型在基于语义分割的裂缝检测中具有良好的准确性,本文在其基础上开展路面裂缝检测方法研究,旨在构建具有良好检测精度和满足实时检测要求的轻量化路面裂缝检测模型。

2 研究方法

路面裂缝检测本质上是一种二分类的语义分割问题,语义分割方法对图像中的每个像素都进行分类,即 为每个像素都分配一个适当的语义标签。本研究基于 DeepLabv3+构建轻量化路面裂缝检测模型,包括以 下步骤:

1)数据预处理。收集路面裂缝图像构建数据集, 对数据集图像进行裁剪操作后划分训练集、验证集以 及测试集。

2)模型改进与训练。从模型轻量化、精度保证和 参数设置等方面改进DeepLabv3+模型,使用训练集 和验证集对改进后的模型进行训练,获得路面裂缝检 测模型。

3)模型验证。利用测试集样本检验改进后的模型,并对检测结果进行评价。

3 数据来源与预处理

本实验图像取自公开裂缝数据集 CRACK500^[17],该数据集中的裂缝图像背景复杂,包含如阴影、光照变化和路面污渍等影响路面裂缝检测效果的干扰项,便于充分训练出泛化能力强的模型, 是文献中常用的公开数据集。CRACK500数据集包括400张训练集、100张验证集以及200张测试集图像,分辨率均为2560 pixel×1440 pixel。为扩增图像数量,将每张图像无重叠地裁剪成16张大小相同的低分辨率图像,只保留包含超过1000个裂缝像素的图像。通过这种方式,获得1896张训练集、348张验证集和1124张测试集图像,分辨率均为640 pixel×360 pixel或360 pixel×640 pixel。最终将所有图像的分辨率均调整为512 pixel×512 pixel。

研究论文

第 61 卷第 8 期/2024 年 4 月/激光与光电子学进展

4 改进的DeepLabv3+模型

4.1 传统 DeepLabv3+模型简介

DeepLabv3+是用于语义分割的典型模型之一, 分为编码和解码两个部分。DeepLabv3+模型的特征 图可视化结果如图1所示。

在编码部分,输入特征图经Xception网络进行特征提取后,共获得5个大小分别为1/2、1/4、1/8、1/16、

1/16 的特征图,依次为图1中的 stage-1~stage-5,将 stage-5通过ASPP模块进行特征提取并完成特征拼接 后利用1个1×1卷积块压缩特征,拼接是指将多个大 小相同的特征图在通道维度上进行连接,可增加通道 数。在解码部分:首先采用1×1卷积块调整 stage-2的 通道数;然后将其与完成4倍上采样后的1/16大小特 征图进行拼接;最后通过3×3卷积块及4倍上采样输 出与原图分辨率相等的预测图像。

图 1 DeepLabv3+模型特征图可视化 Fig. 1 DeepLabv3+ model feature map visualization diagram

4.2 改进的DeepLabv3+模型结构设计

DeepLabv3+模型采用参数量大、网络层数多的 Xception作为主干特征提取网络,虽提高了分割精 度,但模型的复杂度增加,对内存空间的要求更高。 基于此,提出一种基于DeepLabv3+的轻量级路面裂 缝检测模型。首先,在传统DeepLabv3+模型上将 MobileNetv3作为主干特征提取网络,大幅度减小模 型参数量,降低内存占用,提高模型推理速度。其次, 将ASPP模块中的普通卷积替换为Ghost卷积,进一 步轻量化模型。为保证轻量级DeepLabv3+模型的 分割精度,对其结构进行以下优化:1)在ASPP中引 入条形池化模块(SPM);2)采用ECA注意力模块,并 借助ECA设计浅层特征融合结构(SFF);3)构造混 合损失函数。改进后的DeepLabv3+模型结构如图2 所示。

4.2.1 主干特征提取网络MobileNetv3

MobileNet 是一种专注于嵌入式设备或移动端的 轻量级卷积神经网络,有更准确、更高效的特点。 MobileNetv3^[18]是根据 MobileNet改进的第3版,其网 络结构主要分为3部分。第1部分采用1个3×3的卷 积块完成特征提取;第2部分将得到的特征输入一系 列 block结构中,其由9个3×3和6个5×5的卷积块 组成;最后1部分通过1个1×1卷积块对输出特征进 行升维,再通过1个平局池化块将特征转为一维向量 特征。

本实验使用 MobileNetv3 的前 2个部分作为主干 特征提取网络,具体网络结构如表 1 所示。其中:粗 体突出表示改进该行 bneck 结构;"一"表示该层不进 行对应操作;在"Operator"中, bneck 为 MobileNetv3 的 block 结构,"3×3"及"5×5"表示该层使用的卷积 核大小;"Exp size"是每一个 block 结构中第 1 层 1×1 卷积块的卷积核个数;"out"表示输出通道数;"SE" 表示 squeeze and excitation 通道注意力机制,"√"表示 使用 SE 注意力模块;"NL"表示每层使用的非线性激 活 函数的种类,"HS"为 h-swish 激活 函数,"RE"为 ReLU 激活 函数。深层特征图具有语义信息丰富的 优 点,为获得更深的 1/16 大小的特征图,将 MobileNetv3中的第 14个 bneck 结构的步长(s)设置 为1,并使用膨胀卷积增加其感受野。

4.2.2 Ghost卷积

图片通过卷积操作后,可获得诸多特征图,但存 在特征图冗余的现象,即有些特征图相似性很高, Han等^[19]将相似的特征图认为是彼此的Ghost,并设 计了更轻量的Ghost卷积来代替普通卷积。Ghost卷 积将普通卷积分为2部分,操作原理如图3所示。首先 通过1个1×1普通卷积块把输出特征图的通道数减 半;然后在第1部分的基础上逐层使用深度可分离卷 积生成冗余的特征图;最后在通道维度上对2组特征

图 2 改进 DeepLabv3+模型结构图 Fig. 2 Improved DeepLabv3+ model structure diagram

Table 1 MobileNetv3 structure							
Input	Operator	Exp size	out	SE	NL	5	
$224^2 \times 3$	Conv2d	_	16	_	HS	2	
$112^2 \times 16$	bneck, 3×3	16	16	—	RE	1	
$112^2 \times 16$	bneck, 3×3	64	24	—	RE	2	
$56^2 \times 24$	bneck, 3×3	72	24	—	RE	1	
$56^2 \times 24$	bneck, 5×5	72	40	\checkmark	RE	2	
$28^2 \times 40$	bneck, 5×5	120	40	\checkmark	RE	1	
$28^2 \times 40$	bneck, 5×5	120	40	\checkmark	RE	1	
$28^2 \times 40$	bneck, 3×3	240	80	—	HS	2	
$14^2 \times 80$	bneck, 3×3	200	80	—	HS	1	
$14^2 \times 80$	bneck, 3×3	184	80	—	HS	1	
$14^2 \times 80$	bneck, 3×3	184	80	—	HS	1	
$14^2 \times 80$	bneck, 3×3	480	112	\checkmark	HS	1	
$14^2 \times 112$	bneck, 3×3	672	112	\checkmark	HS	1	
14 ² ×112	bneck, 5×5	672	160	\checkmark	HS	2→1	
$14^{2} \times 160$	bneck, 5×5	960	160	\checkmark	HS	1	
$14^{2} \times 160$	bneck, 5×5	960	160	\checkmark	HS	1	

表1 MobileNetv3结构

图进行连接。使用 Ghost 卷积代替传统 DeepLabv3+ 模型编码部分 ASPP 模块中的普通卷积,减小模型参数量,使模型更轻量化。

4.2.3 条形池化模块

路面裂缝的结构呈带状分布,如图4所示,传统的

池化方法是在固定的正方形区域内收集信息,易丢失 带状裂缝的远程上下文信息。针对此问题,在传统 DeepLabv3+模型编码部分的ASPP模块中利用条形 池化模块^[20]进行池化操作,有效捕获裂缝结构的上下 文信息,同时能避免无关区域的噪声干扰,进而更好地 提升分割精度。

条形池化模块网络结构如图5所示。条形池化模 块由2个途径组成,分别沿水平和垂直空间维度对远 程上下文信息进行编码,可有效扩大网络的感受野 范围。

在条形池化模块中,对输入尺寸为*H*×W的特征 图,分别在水平和垂直空间维度上以1行或1列进行平 均池化后得到1×W和*H*×1的特征图,如图5(b)、(c) 所示,随后对2个输出特征图分别沿着水平和垂直方 向进行扩容,如图5(d)、(e)所示,并将扩容后的特征 图通过对应位置像素求和的方式进行融合,如图5(f) 所示,最后通过1×1卷积块和Sigmoid函数获得权值, 将权值与原输入特征图相乘得到输出特征图,如 图5(g)所示。

4.2.4 ECA注意力模块

注意力机制可让卷积神经网络模型在处理图像时 自适应地注意重要、有效的目标信息,提升模型性能。 ECA^[21]是一种新的捕捉局部跨通道交互信息的注意 力模块,其高效且轻量。在1/16大小特征图及其4倍 上采样与1/4大小特征图拼接后的位置加入ECA,增

图 3 普通卷积与 Ghost 卷积的对比。(a)普通卷积;(b) Ghost 卷积 Fig. 3 Comparison of ordinary convolution and Ghost convolution. (a) Ordinary convolution; (b) Ghost convolution

图4 普通池化、条形池化与对应标签。(a)普通池化;(b)条形 池化;(c)对应标签

Fig. 4 Common pooling, strip pooling and corresponding label. (a) Common pooling; (b) strip pooling; (c) corresponding label

强模型特征提取能力。

传统 DeepLabv3+模型在解码部分没有充分结合 浅层特征图,提取的局部细节信息不够丰富,从而使整 个模型的预测结果并不精确。为解决该问题,所提方 法利用特征金字塔思想并借助 ECA 在应用 1/4 大小 的特征图的基础上加入 1/2 大小的特征图,具体操作 如图 6 所示。A 和 B 分别为编码部分下采样时生成的 特征图,大小分别为 1/2 和 1/4,通道数分别为 16 和 24。C为A 通过 1 个卷积核大小为 3、步长为 2、空洞率 为 2 的膨胀卷积块和 ECA 模块后得到的特征图,大小 为 1/4,使用膨胀卷积可扩大感受野,ECA 模块可去除 噪声,学习更有用的特征信息。D 为通过 ECA 模块后 的特征图,大小不变。将C和D拼接后得到E,E使用 1次1×1卷积块进行通道降维后得到F。ASPP模块 输出的特征图通过1次1×1卷积块再进行4倍上采样 后得到的特征图与F拼接,拼接后的特征图使用1次 3×3卷积块后再进行4倍上采样得到的输出结果即为 模型的预测结果。

相同条件下未引入和引入浅层特征融合结构时模型浅层特征图的对比结果如图7所示,可以看出,引入 浅层特征融合结构后,裂缝特征的表达能力增强,局部 信息更为丰富,而其余背景信息则得到了抑制。 4.2.5 混合损失函数

训练数据集中的类别不平衡导致深度学习模型在 训练过程中过分关注像素数量多的样本,阻碍模型精 度的提升。表2为训练集中各类别像素占总体像素的 百分比。可以看到,背景类别的像素是目标类别裂缝 像素的15倍之多,在训练过程中可能会将部分裂缝样 本误判为背景,进而降低模型的精度。

为此,构造一种结合二分类交叉熵损失(BCE)和 Dice损失的混合损失函数。BCE是二分类任务中常 用的损失函数,其在衡量标签与预测结果之间的相似 性方面表现优异,因此,将BCE作为改进 DeepLabv3+模型的损失函数之一。但该损失函数对 类别不平衡问题较为敏感,会导致像素占比较多的类 别出现过拟合,其表达式为

$$L_{\rm BCE} = -\frac{1}{N} \Big[y_i \lg p_i + (1 - y_i) \lg (1 - p_i) \Big], \quad (1)$$

式中:N表示图像的总像素数;y_i和p_i分别表示第i个像素点的标签值和预测概率值。

Dice损失适用于训练类别不平衡的分割模型,在 类别不平衡的情况下可以达到更好的效果。但其对噪 声敏感,可能会将边界信息忽略,致使边界分割不佳, 其表达式为

图 5 条形池化模块网络结构示意图。(a)输入特征图;(b)(c)池化特征图;(d)(e)扩容特征图;(f)融合特征图;(g)输出特征图 Fig. 5 Schematic diagram of the network structure of the strip pooling module. (a) Input feature map; (b) (c) pooling feature maps; (d)(e) expand feature maps; (f) fusion feature map; (g) output feature map

图6 浅层特征融合结构图

Fig. 6 Diagram of shallow feature fusion structure

$$L_{\text{Dice}} = 1 - \frac{\sum_{i=1}^{N} p_i y_i + \varepsilon}{\sum_{i=1}^{N} p_i + y_i + \varepsilon} - \frac{\sum_{i=1}^{N} (1 - p_i)(1 - y_i) + \varepsilon}{\sum_{i=1}^{N} (2 - p_i - y_i) + \varepsilon},$$
(2)

为加快收敛,减少过拟合,ε值设置为1。

因此,混合BCE和Dice损失对模型中的损失进行 计算:

ure ma	ip; (g) output leature map	
表2	训练集中各类别像素占总体像素的比值	

Table 2 The ratio of each pixel in the training set to the total pixel

Class Backer	round Croo	1_
Class Dackgi	iouliu Ciac	K
Percentage / % 93.	94 6.0	6

$$L_{\text{Total}} = L_{\text{BCE}} + L_{\text{Dice}\,\circ} \tag{3}$$

混合损失函数可以解决裂缝图像中样本不均衡的 问题,获得更精确的像素级检测效果,也能同时关注像 素级别的分类准确率以及图像裂缝的分割效果,进而 使模型更稳定训练。

5 模型的训练与测试

5.1 实验环境与模型训练

本实验在计算机上完成,利用 Python 及 PyTorch 框架来改进 DeepLabv3+模型。实验环境如表3 所示。

为了提高模型的训练效率和性能,采用迁移学习 的方法对模型进行训练。在模型的训练中,首先冻结 主干特征提取网络层,以便将更多的计算资源用于训 练后半部分的网络层,这个过程被称为冻结训练。训

图7 浅层特征图可视化。(a)原图像;(b)原特征图;(c)引入浅层特征融合结构后的特征图

Fig. 7 Shallow feature map visual diagram. (a) Original image; (b) original feature map; (c) feature map after introducing shallow feature fusion structure

	表3 实验环境	
Table 3	Experimental environme	nt

Configuration	Parameter			
Operating environment	Ubuntu 16.04			
Processor	7 Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz			
Graphic processing unit	NVIDIA Gefore GTX Titan X			
Accelerating environment	GPU			
Development platform	Visual Studio Code			

练一定代数后,解冻主干特征提取网络层,主干特征 提取网络层的初始权重值采用 MobileNetv3 PASAL VOC2012数据集上预训练好的模型参数,继续对整 个网络进行训练,直至获得最终模型,即解冻训练。 采用这种训练方式可以在有效保证权值的同时加快 模型的收敛速度。

合理设定训练参数,是增强模型性能的重要手段。训练图像尺寸设为512 pixel×512 pixel,在使用预训练参数时,设置模型的迭代次数(epoch)为50次,批处理的训练集样本数量(batch size)为16。不使用预训练模型时,设置模型的迭代次数为100次,批处理的训练集样本数量为8。基础学习率(base learning rate)为0.0005,学习率采用余弦退火策略进行调节,基础学习率最小值设置为0.000005。优化器选用Adam梯度优化器,其超参数beta_1设置为0.9, beta_2设置为0.999。

5.2 评价指标

为客观评价训练所得模型对路面裂缝的检测效果, 实验选取交并比(R_{IOU})、准确率(R_{precision})、召回率(R_{recall})、 平均帧率(FPS)以及参数量(Params)作为评价指标。 交并比、准确率和召回率评价指标计算公式分别为

$$R_{\rm IoU} = \frac{N_{\rm TP}}{N_{\rm TP} + N_{\rm FP} + N_{\rm FN}},$$
 (4)

$$R_{\text{precision}} = \frac{N_{\text{TP}}}{N_{\text{TP}} + N_{\text{FP}}},\tag{5}$$

 $R_{\text{recall}} = \frac{N_{\text{TP}}}{N_{\text{TP}} + N_{\text{FN}}},\tag{6}$

式中:N_{TP}表示分类正确的裂缝像素数;N_{FP}表示将背景预测为裂缝的像素数;N_{FN}表示将裂缝预测为背景的像素数。

交并比反映预测裂缝与实际裂缝的重合程度;准确率反映裂缝检测的可靠程度;召回率反映裂缝检测的完整程度;另外,平均帧率为模型1s处理的图像数量,越高表示模型推理速度越快。参数量为评价模型体积的重要指标,越低表示模型的轻量化程度越高。

由于准确率和召回率是相互矛盾的,召回率高时, 准确率偏低,为综合评价这两个指标,引入F1分数(*s*_{F1}), 其值越大表示分割效果越佳,公式如下:

$$s_{\rm F1} = \frac{2 \times R_{\rm recall} \times R_{\rm precision}}{R_{\rm recall} + R_{\rm precision}} \,. \tag{7}$$

5.3 评价指标

5.3.1 消融实验

为验证将传统 DeepLabv3+模型的主干特征提取 网络 Xception 替换为轻量级的 MobileNetv3、ASPP模 块中的普通卷积改为 Ghost 卷积的必要性,以及采用 条形池化模块、引入 ECA 注意力模块、设计浅层特征 融合结构和构造混合损失函数操作的有效性,设置 6 组不同方案进行消融实验。实验结果如表4所示,粗 体突出显示为最佳结果,方案1为传统 DeepLabv3+ 模型的实验结果。

表4 消融实验结果 Table 4 Results of ablation experiment

							·				
Plan	MobileNetv3, Ghost	BCE+Dice	SPM	ECA	SFF	$R_{\scriptscriptstyle \mathrm{IoU}}$ / $\%$	$R_{ m precision}$ / $^0\!\!/_0$	$R_{ m recall}$ / $\%$	F1/%	FPS	Params /MB
1						56.47	74.47	70.03	72.18	21.48	208.70
2	\checkmark					55.73	73.99	69.31	71.57	57.74	14.32
3	\checkmark	\checkmark				56.57	68.91	75.95	72.26	57.74	14.32
4	\checkmark	\checkmark	\checkmark			56.84	69.95	75.20	72.48	52.20	14.46
5	\checkmark	\checkmark	\checkmark	\checkmark		57.00	70.50	74.87	72.62	50.22	14.46
6	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	57.21	70.60	75.09	72.76	47.18	14.53

由表4消融实验结果可知,相较于传统 DeepLabv3+,方案2的参数量减小194.38 MB,平均 帧率提升36.26,表明将传统DeepLabv3+模型的 Xception 主干特征提取网络改为更轻量级的 MobileNetv3、将ASPP模块中的普通卷积改为Ghost 卷积可明显减小模型参数量,显著提高模型推理速度。方案6相较于传统DeepLabv3+和方案2、3、4及方案5在交并比、F1值方面均有所提升,且比传统DeepLabv3+的参数量减小194.17 MB,减少93.04%,平均帧率多25.7,增加1.20倍,表明所提方

研究论文

法可以大幅减小参数量,在提升路面裂缝检测精度的 同时满足实时性。

5.3.2 不同模型性能对比分析

为进一步验证改进 DeepLabv3+模型的路面裂缝 检测性能,将所提模型与 FPHBN^[17]、CNNs^[22]和 ACNet^[23]模型进行比较。FPHBN是一种新颖的网络 模型架构,其以特征金字塔的方式将上下文信息集成 到低级特征中,用于路面裂缝检测,在不同数据集上 均取得了较好的检测效果;CNNs作为有效的裂缝检 测模型,其稳定且可在不复杂的体系结构中快速运 行;ACNet是一种先进的基于注意力机制的裂缝检测 模型,取得了理想的检测效果。

文献[23-24]中提供了 FPHBN、CNNs 和 ACNet 模型在 CRACK500 数据集上裂缝检测精度的实验结 果,其训练及测试使用的数据集和预处理方式与本研 究完全一致,对比结果如表5所示。由表5可知,所提 方法在交并比、召回率和F1值评价指标方面有很大

第 61 卷第 8 期/2024 年 4 月/激光与光电子学进展

	_ /				
表5	在CRA	.CK500数	据集上使用	不同模型的测试结	果比较

的改进,说明其具有良好的检测精度。

Table 5	Comparison	of test results using differen	t models on
		the CDACKEOO deterrat	

	the C.	lataset	unit. /0	
Model	$R_{\scriptscriptstyle m IoU}$	$R_{ m precision}$	$R_{ m recall}$	F1
FPHBN	54.51	71.23	71.65	70.56
CNNs	52.61	69.54	67.44	68.95
ACNet	54.92	68.05	74.89	69.82
Proposed method	57.21	70.60	75.09	72.76

采用与本研究相同的数据集和训练方法对 经典的 DeepLabv3+、M-PSPNet(主干网络为 MobileNetv2)、R-PSPNet(主干网络为ResNet50)和 U-Net模型进行训练,并与所提方法进行比较,对比结 果见表 6。

Table 6 Comparison of test results between the proposed method and different semantic segmentation models							
Model	backbone	$R_{\scriptscriptstyle m IoU}$ / $\%$	$R_{ m precision}$ / $\%$	$R_{ m recall}$ / $^0\!\!/_0$	F1/%	FPS	Params /MB
Traditional DeepLabv3+	Xception	56.47	74.47	70.03	72.18	21.48	208.70
M-PSPNet	MobileNetv2	53.86	73.48	66.86	70.01	86.82	9.06
R-PSPNet	ResNet50	55.37	71.74	70.81	71.27	47.09	178.17
U-Net	VGG16	55.59	71.22	71.70	71.50	26.91	94.95
Proposed method	MobileNetv3	57.21	70.60	75.09	72.76	47.18	14.53

表 6	所提方法与	有不同语义分	割模型的测	试结果比较	交	
 of tost was	ulta hotwoon	المحمد محمد الم	mosth od ond	different a		

从表6可知:所提方法相较于传统 DeepLabv3+、 R-PSPNet和U-Net模型,路面裂缝检测的交并比分别 提高0.74百分点、1.84百分点和1.62百分点,F1分数 分别提高 0.58 百分点、1.49 百分点和 1.26 百分点;模 型的参数量分别减小 194.17 MB、163.64 MB 和 80.42 MB;平均帧率分别提高 25.7、0.09 和 20.27。 所提方法与M-PSPNet模型相比,参数量增加5.47 MB,平均帧率降低39.64,M-PSPNet模型虽效率比所 提方法高,但是以牺牲精度为代价,其交并比和F1分 数比传统 DeepLabv3+还低,检测效果不佳。值得注 意的是,所提方法牺牲了一些准确率来换取更高的召 回率,较于传统 DeepLabv3+、M-PSPNet、R-PSPNet 和U-Net模型,准确率分别降低3.87百分点、2.88百 分点、1.14百分点和0.62百分点,召回率分别提高 5.06百分点、8.23百分点、4.28百分点和3.39百分 点。召回率的提高有利于裂缝的检出,裂缝漏判少,利 于制定准确的路面养护决策。

综上所述,所提方法能有效提升路面裂缝的检测 精度,相较于经典的 DeepLabv3+、M-PSPNet、R-PSPNet及U-Net模型有更高交并比和F1分数。虽 然所提方法的参数量及平均帧率评价指标不及 M-PSPNet模型,但其以57.21%的交并比、72.76%的 F1分数、14.53 MB的参数量和47.18的平均帧率在 保证路面裂缝检测精度的同时满足实时检测要求,取 得最优的检测效果,且可有效避免阴影、光照变化和 路面污渍等因素的干扰,有较强的鲁棒性。上述检测 精度和速度的实验验证了所提方法的有效性。 5.3.3 不同模型检测裂缝的可视化效果对比

所提方法与不同语义分割模型的可视化效果如 图8所示,图中红色实线方框区域为漏检区域,红色虚 线方框区域为误检区域。从图8第1行和第2行可以 看出,当图像中裂缝清晰且干扰较少时,这5种模型均 能较好地检测出裂缝。当图像清晰度不高或图像中裂 缝的裂缝较为细小、不够清晰或存在其他干扰时,各个 模型检测结果有较大差距。图8第3行中,由于图像中 的裂缝难以辨识,各检测模型都出现了不同程度的漏 检,其中,M-PSPNet、R-PSPNet及U-Net漏检较为严 重,而所提方法漏检较少,能更多地体现裂缝细节,检 测结果与 ground truth 相近。图 8第4行中, M-PSPNet 和 R-PSPNet 漏检较多, 检测的裂缝不连续, 其中, M-PSPNet漏检最多,传统DeepLabv3+、U-Net和所提 方法存在误检,U-Net误检较严重,所提方法虽有一定 程度的误检,但整体检测效果与ground truth最相似, 检测的裂缝准确、连续。从图8第5~6行中可以看出, 所提方法检测的裂缝细节信息更丰富,与ground truth 的重合程度最高,基本能够保持裂缝的完整性。

图 8 5种模型的可视化结果。(a)原图像;(b) ground truth;(c)传统 DeepLabv3+;(d) M-PSPNet;(e) R-PSPNet;(f) U-Net; (g)所提方法

Fig. 8 Visualized results of 5 models. (a) Original images; (b) ground truth; (c) traditional DeepLabv3+; (d) M-PSPNet; (e) R-PSPNet; (f) U-Net; (g) proposed method

6 结 论

检测路面裂缝是修复裂缝的前提,能有效预防裂缝向更严重病害发展,对提高路面的安全性及养护经济性具有重要意义。为实现快速、准确的路面裂缝自动检测,提出基于改进DeepLabv3+模型的路面裂缝自动检测方法,有效避免了路面阴影、污渍及其他因素的干扰,鲁棒性强。

在1124张相同测试集上以交并比和F1分数为判断依据,通过对比实验验证所提方法的有效性与可行性。较于传统 DeepLabv3+模型,所提方法的交并比提高 0.74 百分点,F1分数提高 0.58 百分点,且以 14.53 MB 的参数量和 47.18 的平均帧率在保证路面裂缝检测精度的同时满足实时检测要求,取得最优的检测效果。

为更多地检出裂缝,防止漏检,所提方法在保证综合指标 F1 分数的前提下牺牲了一些准确率来换取更高的召回率。

下一步研究可从模型剪枝和知识蒸馏等方法入 手,进一步优化检测模型的体积与精度,提升在不同环 境状态下对路面裂缝检测的实时性与准确性。

参考文献

- 马建,赵祥模,贺拴海,等.路面检测技术综述[J].交通运输工程学报,2017,17(5):121-137.
 Ma J, Zhao X M, He S H, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5):121-137.
- [2] 王博, 王霞, 陈飞, 等. 航拍图像的路面裂缝识别[J]. 光 学学报, 2017, 37(8): 0810004.
 Wang B, Wang X, Chen F, et al. Pavement crack recognition based on aerial image[J]. Acta Optica Sinica, 2017, 37(8): 0810004.
- [3] Li P, Wang C, Li S M, et al. Research on crack detection method of airport runway based on twicethreshold segmentation[C]//2015 Fifth International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC), September 18-20, 2015, Qinhuangdao, China. New York: IEEE Press, 2016: 1716-1720.
- [4] 李鹏,赵芬芬,杜敏.基于双树复小波的直方图路面裂缝 检测算法[J].安徽大学学报(自然科学版),2018,42(1): 38-44.

Li P, Zhao F F, Du M. The cracks detection algorithm of pavement based on histogram of dual-tree complex

第 61 卷第 8 期/2024 年 4 月/激光与光电子学进展

研究论文

wavelet[J]. Journal of Anhui University (Natural Science Edition), 2018, 42(1): 38-44.

[5] 韩锟,韩洪飞.基于区域级和像素级特征的路面裂缝检测方法[J].铁道科学与工程学报,2018,15(5):1178-1186.

Han K, Han H F. Pavement crack detection method based on region-level and pixel-level features[J]. Journal of Railway Science and Engineering, 2018, 15(5): 1178-1186.

- [6] 赵菲,邓英捷.融合多异构滤波器的轻型弱小目标检测 网络[J].光学学报,2023,43(9):0915001.
 Zhao F, Deng Y J. Light dim small target detection network with multi-heterogeneous filters[J]. Acta Optica Sinica, 2023, 43(9): 0915001.
- [7] Lin J P, Haberstroh F, Karsch S, et al. Applications of object detection networks in high-power laser systems and experiments[J]. High Power Laser Science and Engineering, 2023, 11(1): e7.
- [8] 陈兵,贺晟,刘坚,等.基于轻量化 DeepLab v3+网络的 焊缝结构光图像分割[J].中国激光,2023,50(8):0802105.
 Chen B, He S, Liu J, et al. Weld structured light image segmentation based on lightweight DeepLab v3+ network [J]. Chinese Journal of Lasers, 2023, 50(8):0802105.
- [9] 高慧, 阎晓东, 张衡, 等. 基于 Res2Net 的多尺度遥感影 像海陆分割方法[J]. 光学学报, 2022, 42(18): 1828004.
 Gao H, Yan X D, Zhang H, et al. Multi-scale sea-land segmentation method for remote sensing images based on Res2Net[J]. Acta Optica Sinica, 2022, 42(18): 1828004.
- [10] 罗晖, 贾晨, 李健. 基于改进 YOLOv4 的公路路面病害 检测算法[J]. 激光与光电子学进展, 2021, 58(14): 1410025.
 Luo H, Jia C, Li J. Road surface disease detection

algorithm based on improved YOLOv4[J]. Laser & Optoelectronics Progress, 2021, 58(14): 1410025.

- [11] Haciefendioğlu K, Başağa H B. Concrete road crack detection using deep learning-based faster R-CNN method [J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2022, 46(2):1621-1633.
- [12] 孙朝云,马志丹,李伟,等.基于深度卷积神经网络融 合模型的路面裂缝识别方法[J].长安大学学报(自然科 学版),2020,40(4):1-13.
 Sun Z Y, Ma Z D, Li W, et al. Pavement crack identification method based on deep convolutional neural network fusion model[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(4): 1-13.
- [13] 彭磊,张辉.基于U-Net的道路缺陷检测[J].计算机科学, 2021, 48(S2): 616-619.
 Peng L, Zhang H. U-Net for pavement crack detection
 [J]. Computer Science, 2021, 48(S2): 616-619.
- [14] 王保宪,白少雄,赵维刚.基于特征增强学习的路面裂缝病害视觉检测方法[J].铁道科学与工程学报,2022,19(7):1927-1935.
 Wang B X, Bai S X, Zhao W G. Pavement crack damage visual detection method based on feature reinforcement learning[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1927-1935.
- [15] 袁嘉豪,张伟锋,岳学军,等.多种主干网络下

DeepLabv3+的混凝土梁裂缝语义分割研究[C]//中国 水利学会2021学术年会论文集第五分册.北京:中国水 利学会,2021:160-164.

Yuan J H, Zhang W F, Yue X J, et al. Semantic Segmentation of concrete beam cracks based on DeepLabv3+ in Multiple Backbone Networks [C]//Chinese Hydraulic Society 2021 Annual Conference Proceedings Volume 5. Beijing: Chinese Hydraulic Society, 2021:160-164.

- [16] 李国燕,梁家栋,刘毅,等.MFC-DeepLabV³⁺:一种多 特征级联融合裂缝缺陷检测网络模型[J].铁道科学与工 程学报,2023,20(4):1370-1381.
 Li G Y, Liang J D, Liu Y, et al. MFC-DeepLabV³⁺: a multi feature cascade fusion crack defect detection network model[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1370-1381.
- [17] Yang F, Zhang L, Yu S J, et al. Feature pyramid and hierarchical boosting network for pavement crack detection
 [J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535.
- [18] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27-November 2, 2019, Seoul, Republic of Korea. New York: IEEE Press, 2020: 1314-1324.
- [19] Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA. New York: IEEE Press, 2020: 1577-1586.
- [20] Hou Q B, Zhang L, Cheng M M, et al. Strip pooling: rethinking spatial pooling for scene parsing[C]//2020 IEEE/ CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA. New York: IEEE Press, 2020: 4002-4011.
- [21] Wang Q L, Wu B G, Zhu P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks
 [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA. New York: IEEE Press, 2020: 11531-11539.
- [22] Nguyen N T H, Le T H, Perry S, et al. Pavement crack detection using convolutional neural network[C]// Proceedings of the 9th International Symposium on Information and Communication Technology, December 6-7, 2018, Danang City, Viet Nam. New York: ACM Press, 2018: 251-256.
- [23] 曹锦纲,杨国田,杨锡运.基于注意力机制的深度学习路面裂缝检测[J]. 计算机辅助设计与图形学学报,2020,32(8):1324-1333.
 Cao J G, Yang G T, Yang X Y. Pavement crack detection with deep learning based on attention mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(8):1324-1333.
- [24] Wang W J, Su C. Convolutional neural network-based pavement crack segmentation using pyramid attention network[J]. IEEE Access, 2020, 8: 206548-206558.